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Abstract 
In this study, the effect of the distance of metallic gates to the two-dimensional electron system on incompressible strips 

in the quantum Hall regime was investigated. In the calculations, the two-dimensional spatial distributions of the electron 
density and potential profile were determined by solving the three-dimensional Poisson equation for all charges defined in 
the three-dimensional heterostructure with a self-consistent method. In the presence of a perpendicular magnetic field, two 
different regimes occur on the electron distribution. These are incompressible strips and compressible regions. The thickness 
of the incompressible strip and the velocity of the electron in this region vary for various magnetic field values. It has been 
demonstrated that the thickness of the incompressible strips and the velocity of the electron in these regions change when the 
distance of the metallic gates defined on the three-dimensional heterostructure to the two-dimensional electron system 
changes. The results of the calculations carried out are consistent with the previous studies. 
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INTRODUCTION 
    Experiments with a scanning force 
microscope [1,2] in narrow Hall samples and 
subsequent theoretical studies [3,4] made 
significant contributions to the understanding 
of Incompressible Strips [5,6] formed at low 
temperature and high magnetic field values. It 
is possible to create a two-dimensional electron 
system (2DES) with materials with different 
energy band gaps in three-dimensional (3D) 
heterostructure [7-13] Hall Bar geometry can be 
defined by the potential difference or chemical 
etching method to be applied to the metallic 
gates placed on this structure [14-16]. The 
spatial distribution of electrons created by these 
two methods is locally different. Concurrent, 
the electron distribution generated by the 
chemical etching method will show a different 
distribution according to the amount of etching 
to be made from the surface to the 2DES. 
Likewise, this applies to metallic gates. The 
spatial distribution of electrons will vary as the 
distance of the metallic gates to 2DES changes. 
    Chklovskii et al. [5] have shown that when a 
steep magnetic field is applied to an electron 
distribution confined by the edges, two 

different regimes form on the density profile. 
These are incompressible strip (IS) and 
compressible regions (CS). Including the 
screening property, electrons are placed locally 
up to the Fermi energy level. ISs occur in 
regions where Fermi energy coincides between 
two Landau energy levels, which are formed by 
the effect of the magnetic field. CSs occur in 
other regions. Therefore, there is no accessible 
state in ISs, the electron distribution in these 
regions does not change according to the 
position. Concurrent, since screening is weak in 
these regions, the potential profile changes 
according to position. On the other hand, since 
accessible states already exist in CSs, the 
electron distribution in these regions changes 
with position. In contrast to IS, CS has a higher 
degree of screening, so the potential profile 
does not change depending on the position. 
They demonstrated that one of the most crucial 
factors determining how thick the ISs would be 
is the change in electron distribution at the 
margins according to location. 
    With Landau quantization [17], the electron 
density in two dimensions in the presence of a 
perpendicular magnetic field is defined by the 
filling factor (ν). When Zeeman splitting, that 
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is, spin effects are not taken into account, the 
positions corresponding to ν=2,4,6,.. locally are 
the regions of ISs. 
    In this study, 2DES was created in a 3D 
heterostructure defined by 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺/𝐺𝐺𝐺𝐺1−𝑥𝑥𝐺𝐺𝐴𝐴𝑥𝑥𝐺𝐺𝐺𝐺 
semiconductor materials. Hall Bar geometry 
was defined in 2DES with the negative voltage 
applied to the metallic gates placed on the 3D 
structure. In the presence of a perpendicular 
magnetic field, the thickness of the ISs and the 
electron velocity in these regions were 
calculated as a function of both the magnetic 
field and the distance of the metallic gates to the 
2DES. 
 
THEORY AND MODEL 
    The main purpose of this study is to 
determine the effect of the distance (∆𝑍𝑍𝐺𝐺) 
between metallic gates and 2DES on ISs. For 
this, the thickness of the ISs and the electron 
velocities in these regions were calculated for 
perpendicular and different magnetic field 
magnitudes and ∆𝑍𝑍𝐺𝐺 values. First, with an initial 
condition in which donors and boundary 
conditions in the 3D heterostructure were 
defined, the 3D Poisson equation was solved in 
the absence of magnetic field and at zero 
temperature by a self-consistent method [18]. 
The magnification parameters of the 3D 
heterostructure used for this study are given in 
Fig.1. The spatial distribution of the electron 
density and the potential profile were 
determined from the solution of the Poisson 
equation. At zero temperature, the electron 
charge density locally positioned up to the 
Fermi energy is 𝑛𝑛𝑒𝑒𝑒𝑒(𝑟𝑟), 
 

    ∇2𝑉𝑉(𝑟𝑟) = −𝜌𝜌(𝑟𝑟)
𝜀𝜀

             (1) 
 
it is obtained by the Poisson equation. Here, 
𝜌𝜌(𝑟𝑟) = −𝑒𝑒[𝑛𝑛𝑒𝑒𝑒𝑒(𝑟𝑟)− 𝑛𝑛0] is the screening charge 
density, 𝑛𝑛0 is the donor charge density, 𝜀𝜀 is the 
dielectric constant, 𝑉𝑉(𝑟𝑟) is the potential energy 
for electrons, and 𝑒𝑒 is the electron charge. Using 
Landau quantization [17], when a magnetic 
field is applied perpendicular to the spatial 
distribution of the resulting electron density, 
  
    ν(𝑥𝑥, 𝑦𝑦) = 2𝜋𝜋𝐴𝐴𝐵𝐵2𝑛𝑛𝑒𝑒𝑒𝑒(𝑥𝑥,𝑦𝑦)            (2) 
 
the local fill factor with 2D is determined [6]. 
Here 𝐴𝐴𝐵𝐵 = �ℏ 𝑒𝑒𝑒𝑒⁄  is the magnetic length, 2𝜋𝜋ℏ 
Planck's constant and the magnitude of the 
magnetic field in the 𝑒𝑒 (z) direction. Chklovskii 

et al. [5], with Thomas Fermi approximation 
(TFA) [19], defined the thickness of ISs with 
the expression 
 
    𝑤𝑤𝜈𝜈2 = 2𝜀𝜀ℏ𝜔𝜔𝑐𝑐

𝜋𝜋2𝑒𝑒2
𝑑𝑑𝑛𝑛𝑒𝑒𝑒𝑒(𝑥𝑥)
𝑑𝑑𝑥𝑥 �

𝑥𝑥=𝑥𝑥𝜈𝜈

                   (3) 

 
when the filling factor is an integer. Here, 𝜀𝜀(=
12.4 for 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) is the dielectric constant of the 
material, 𝜔𝜔𝑐𝑐(= 𝑒𝑒𝑒𝑒 𝑚𝑚∗⁄ ) is the cyclotron 
frequency, 𝑚𝑚∗ (= 0.067𝑚𝑚0 for 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) is the 
effective mass of the electron, 𝑚𝑚0 is the free 
electron mass. 𝑥𝑥𝜈𝜈 is the position of the electron 
density when the filling factor is an integer 
With this equation, only the thickness of the 
ν=2 ISs and the electron velocity in these 
regions are calculated according to both the 
magnetic field and the distance of the metallic 
gate to the 2DES. The drift velocity of the 
electron in ISs is determined by [20] 
 

    𝑉𝑉�⃗𝐷𝐷 = 𝐸𝐸�⃗ 𝑥𝑥𝐵𝐵�⃗

𝐵𝐵2
               (4) 

 
In Fig.1, the magnification parameters of the 
3D heterostructure with 128x128x100 mesh, 
the positions of the metallic gates, the positions-
amounts of the donors and the position of the 
2DES are given. Here ∆𝑍𝑍𝐺𝐺 is the distance 
between the metallic gates and 2DES. The 
distance between the two metallic gates placed 
on the structure is approximately 1.06𝜇𝜇𝑚𝑚. In the 
calculations, the value of the aluminum 
concentration in the 3D heterostructure was 
taken as x=0.3 in accordance with the 
experiments. The donors identified in the 
structure are in a single grid in the (x-y) plane, 
known as delta doping in the literature [7,8].  
 

 
Fig. 1. Schematic representation of the 

amplification parameters of the 3D 
heterostructure. 
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    The metallic gate voltage is taken as 𝑉𝑉𝑔𝑔 =
−1.0 𝑉𝑉𝑉𝑉𝐴𝐴𝑉𝑉 for all calculations. In the light of 
these definitions, the spatial distribution of the 
electron density obtained from the solution of 
the Poisson equation for ∆𝑍𝑍𝐺𝐺 = 165𝑛𝑛𝑚𝑚 is shown 
in Fig.2a and the potential profile in Fig.2b. For 
the magnetic field applied homogeneously and 
perpendicular to the obtained electron density, 
a local 2D filling factor is determined by 
Landau quantization. The variation of the 
filling factor for B=1.5 Tesla taken from the 𝑦𝑦 =
0.75𝜇𝜇𝑚𝑚 position in Fig.2a according to the one-
dimensional position at different ∆𝑍𝑍𝐺𝐺 values is 
shown in Fig.3. As the metallic gates move 
away from the 2DES, the electron distribution 
moves towards the edges and the amount of 
density in the center increases. This situation 
changes the variation of the electron 
distribution according to the position in the 
positions where the filling factor is ν=2. The 
thicknesses of the ISs calculated as a function 
of the magnetic field for the ∆𝑍𝑍𝐺𝐺values in Fig.3 
are shown in Fig.4a and the velocities of the 
electrons in these regions are shown in Fig.4b. 
 

 
Fig. 2. For values of ∆𝑍𝑍𝐺𝐺 = 165𝑛𝑛𝑚𝑚 and 𝑉𝑉𝑔𝑔 =
−1.0 𝑉𝑉𝑉𝑉𝐴𝐴𝑉𝑉 (a) spatial distribution of electron 

density, (b) potential profile. 
 
 
 

 As the magnetic field increases, the thickness 
of the ISs increases, and the speed of the 
electron in these regions decreases. As the 
metallic gates move away from 2DES, ν=2 
protects its existence at larger magnetic field 
values. 
 

 
 

Fig. 3. Variation of filling factor with position for 
different ∆𝑍𝑍𝐺𝐺 distances at 𝑉𝑉𝑔𝑔 = −1.0 𝑉𝑉𝑉𝑉𝐴𝐴𝑉𝑉, B=1.5 

Tesla.     
 
The thickness of the IS formed at different 
magnetic field values for ν=2 at the 𝑦𝑦 = 0.75𝜇𝜇𝑚𝑚 
position is shown in Fig.5a as a function of the 
distance between the metallic gates and the 
2DES. Likewise, the velocity of the electron in 
ISs is shown in Fig.5b. In Fig.5a, the thickness 
of the ISs decreases up to approximately ∆𝑍𝑍𝐺𝐺 =
180𝑛𝑛𝑚𝑚 and increases again after this value. In 
response to this situation, the electron velocity 
in ISs shows the opposite feature. In Fig.5a, 
both the edge effects of the 3D heterostructure 
and the negative voltage applied to the metallic 
gates are effective together as the main reason 
for the decrease in thickness in ISs between 
∆𝑍𝑍𝐺𝐺 = 112,5𝑛𝑛𝑚𝑚 and ∆𝑍𝑍𝐺𝐺 = 180𝑛𝑛𝑚𝑚. After the 
value of ∆𝑍𝑍𝐺𝐺 = 180𝑛𝑛𝑚𝑚, the thickness of the ISs 
increases as the contribution from the metallic 
gates decreases due to the increase in the 
distance between the metallic gate and the 
2DES. In this case, it is reflected in the velocity 
of the electron in ISs, as seen in Fig.5b. 
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Fig. 4. Variations of (a) thickness of ISs, (b) drift 
velocity of electrons in ISs according to magnetic 
field for different ∆𝑍𝑍𝐺𝐺 values at 𝑉𝑉𝑔𝑔 = −1.0 𝑉𝑉𝑉𝑉𝐴𝐴𝑉𝑉. 

 

 
Fig. 5. Variations of (a) thickness of ISs, (b) drift 

velocity of electron in ISs according to 
∆𝑍𝑍𝐺𝐺distance for different magnetic field value at 

𝑉𝑉𝑔𝑔 = −1.0 𝑉𝑉𝑉𝑉𝐴𝐴𝑉𝑉. 
 

RESULTS AND CONCLUSION 
    When a magnetic field perpendicular to the 
Hall Bar geometry formed by the metallic gates 
defined on 2DES is applied, the thickness of the 
ISs was calculated according to both the 
magnitude of the magnetic field and the distance 
of the metallic gates to the 2DES. According to 
the calculation results, the thickness of ISs 
increases with the magnitude of the magnetic 
field and the velocity of electrons in these regions 
decreases with the magnitude of the magnetic 
field. At constant magnetic field value, the 
thickness of ISs decreases when metallic gates are 
close to 2DES up to a certain distance. After this 
distance, the thickness of the ISs increases. In 
response to this situation, the electron velocity in 
ISs shows the opposite feature. By changing the 
distance between the 2DES and the metal gate for 
a constant magnetic field value, it is possible to 
change the IS thickness and electron velocity in 
these regions. By varying the distance between 
the 2DES and the metal gate, the IS thickness and 
electron velocities in these regions were 
calculated for the first time in this work. 
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